【北京优质生物信息学芯片数据分析实验外包技术服务】
基因芯片(Gene chip)(又称DNA芯片、生物芯片)最初是80年代中期提出的。它是由大量DNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过碱基互补配对检测生物信息。即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,检测到一组序列完全互补的探针序列。据此可重组出靶核酸的序列。
目前已有许多数据库,包括NCBI的GEO数据库(https://www.ncbi.nlm.nih.gov/geo/),ArrayExpress数据库(https://www.ebi.ac.uk/arrayexpress/),和TCGA数据库(https://cancergenome.nih.gov/)等等,记录和储存着大量芯片相关的数据,其中GEO数据库是目前最大最全的数据库,可供科研人员查询和下载相关数据。
下面和大家分享一下基因芯片数据的预处理方法。
1)分析前需要对数据进行背景信号处理:背景处理即过滤芯片杂交信号中属于非特异性的背景噪音部分。一般以图像处理软件对芯片划格后,每个杂交点周围区域各像素吸光度的平均值作为背景,但此法存在芯片不同区域背景扣减不均匀的缺点。也可利用芯片最低信号强度的点(代表非特异性的样本与探针结合值)或综合整个芯片非杂交点背景所得的平均吸光值做为背景。
背景处理之后,我们可以将芯片数据放入一个矩阵中:
其中,各字母的意义如下:
N:条件数;
G:基因数目(一般情况下,G>>N);
行向量mi=(mi1,mi2,…,miN)表示基因i在N个条件下的表达水平(这里指绝对表达水平,亦即荧光强度值);
列向量mj=(m1j,m2j,…,mGj)表示在第j个条件下各基因的表达水平(即一张芯片的数据);
元素mij表示第基因i在第j个条件下(绝对)基因表达数据。m可以是R(红色,Cy5,代表样品组)。也可以是G(绿色,Cy3,代表对照组)。
2)芯片数据清理:经过背景校正后的芯片数据中可能会产生负值,还有一些单个异常大(或小)的峰(谷)信号(随机噪声)。对于负值和噪声信号,通常的处理方法就是将其去除,常见数据经验型舍弃方法有:A.标准值或奇异值舍弃法;B.变异系数法;前景值<200;前景值-平均数/前景值-中位数<80%等等。然而,数据的缺失对后续的统计分析(尤其是层式聚类和主成分分析)有致命的影响。Affymetrix公司的芯片分析系统会直接将负值修正为一个固定值。
缺失值得处理方法:对数据的删除,通常是删去所在的列向量或行向量。一个比较常用的做法是,事先定义个阈值M。若行(列)向量中的缺失数据量达到阈值M,则删去该向量。若未达到M,有两种方法处理,一是以0或者用基因表达谱中的平均值或中值代替,另一个是分析基因表达谱的模式,从中得到相邻数据点之间的关系,据此利用相邻数据点估算得到缺失值(类似于插值)。填补缺失值(k临近法):利用与待补缺基因距离最近的k个临近基因的表达值来预测待填补基因的表达值。
3)提取芯片数据的表达值:由于芯片数据的小样本和大变量的特点,导致数据分布呈偏态、标准差大。对数转换能使上调、下调的基因连续分布在0的周围,更加符合正态分布,同时对数转换使荧光信号强度的标准差减少,利于进一步的数据分析。
4)芯片数据的归一化:经过背景处理和数据清洗处理后的修正值反映了基因表达的水平。然而在芯片试验中,各个芯片的绝对光密度值是不一样的,在比较各个试验结果之前必需将其归一化(normalization,也称作标准化)。数据的归一化目的是调整由于基因芯片技术引起的误差,不是调整生物RNA 样本的差异。在同一块芯片上杂交的、由不同荧光分子标记的两个样品间的数据,也需归一化。常用的方法是平均数、中位数标准化(mean or median normalization):将各组实验的数据的log ratio中位数或平均数调整在同一水平。中位数标准化:将每个芯片上的数值减去各自芯片上log Ratio值的中位数,使得所有芯片的log Ratio值中位数就变成了0,从而不同芯片间log Raito具有可比性。
5) 差异基因表达分析: 经过预处理,探针水平数据转变为基因表达数据。为了便于应用一些统计和数学术语,基因表达数据仍采用矩阵形式。
A.芯片数据的差异分析主要包括三种方法:
1. 倍数分析方法:倍数变换fold change,单纯的case与control组表达值相比较,对没有重复实验样本的芯片数据,或者双通道数据采用这种方法。
2. 参数法分析(t检验):当t超过根据可信度选择的标准时, 比较的两样本被认为存在着差异。但小样本基因芯片实验会导致不可信的变异估计,此时采用调节性T检验。
3. 非参数分析:由于微阵列数据存在“噪声”干扰而且不满足正态分布假设,用t检验有风险。非参数检验并不要求数据满足特殊分布的假设,所以可使用非参数方法对变量进行筛选。如经验贝叶斯法、芯片显著性分析SAM法。
B. 芯片数据的差异分析的常用软件包括:
1. Limma:它是一个功能比较全的包,既含有cDNA芯片的RAW data输入、前处理(归一化)功能,同时也有差异化基因分析的“线性”算法(limma: Linear Models for Microarray Data),特别是对于“多因素实验(multifactor designed experiment)”。limma包的可扩展性非常强,单通道(one channel)或者双通道(tow channel)数据都可以分析差异基因,甚至也包括了定量PCR和RNA-seq。
2. DESeq2和EdgeR包: 都可用于做基因差异表达分析,主要也是用于RNA-Seq数据,同样也可以处理类似的ChIP-Seq,shRNA以及质谱数据。这两个都属于R包,其相同点在于都是对count data数据进行处理,都是基于负二项分布模型。
3. GFOLD软件:对于有生物学重复的数据(一般的转录组数据都会有生物学重复),我们一般采用一个叫edgeR和DEseq的R包。但如果预先测了一批数据没有重复的数据进行一个预分析。这时候edgeR依然可以用,不过需要认为指定一个dispersion值,这样的不同的人就可以有不同的结果,在查阅了很多资料之后呢,大家一致认为没有重复的转录组数据应该用GFOLD软件。
至善研究院为客户提供科研托管一站式服务,从科研课题设计到科研项目实施以及数据分析全程托管。实验项目结束后还可以为客户提供SCI论文写作指导,更能为客户提供包含科研技术培训、人才培养、学术交流、国外进修等服务,至善研究院愿做您的终身科研管家。
北京医学公司专业提供硕士课题/博士课题/分子生物医学科研课题项目整体实验外包实验代做技术服务价格报价、型号、品牌等供应信息介绍,致力为您提供优质专业提供硕士课题/博士课题/分子生物医学科研课题项目整体实验外包实验代做公司厂商信息。集生物化学、基础医学、药理学研究为一体的学术研究服务机构,至善(北京)健康医学研究院专注于生命科学研究领域,紧跟国际研究最新动态,旨在为国内外研究机构提供稳定可靠的专业提供硕士课题/博士课题/分子生物医学科研课题项目整体实验外包实验代做技术服务。一流研究管理团队是整体生物医学科研课题实验项目外包实验代做技术服务以及高水平学术顾问团队是公司至始至终的核心竞争力。目前提供整体生物医学科研课题实验项目外包实验代做技术服务研究领域涵盖肿瘤、心脑血管系统、呼吸系统、消化系统、泌尿系统、生殖系 统、内分泌系统、血液系统、免疫系统、神经(精神)系统相关领域的药理学、基础医学研究、分子生物学。
可提供整体生物医学科研课题实验项目外包实验代做技术服务内容:
+ 转基因动物模型建立构建制备技术服务
+ SCI文章服务
+ Talen/Cas9
+ MicroRN、lnc RNA、cirRNA系列研究
+ 课题、生物医学动物实验项目整体外包
+ 临床医生全程式科研服务
+ 实验指导
+ 课题申请